This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Here he gives us a deeper look at how genomic medicine is evolving and the barriers that are preventing it from reaching its full potential. I saw this, in particular, with the finishing of the human genome,” says Charlie. “At In reality, finishing the human genome was the first step of what is a long journey.”.
Credit: LIU Yang Researchers from the Single-Cell Center at the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences have developed a technique to sort and sequence the genome of bacteria in soil one bacterial cell at a time, while also identifying what its function is in the soil environment. […]. (..)
Scientists discover complex and dynamic bacterial ecosystem in human breast milk using genomic technology pioneered for the International Space Station Credit: Emmanuel Gonzalez et al.
Researchers from Skoltech, Lomonosov Moscow State University, and the Kharkevich Institute for Information Transmission Problems have studied the genomes of some 200 strains of bacteria to determine which proteins in the ribosome, part of the key cell machinery, can be safely lost and why.
WHO launches global network to detect and prevent infectious disease threats WHO and partners are launching a global network to help protect people from infectious disease threats through the power of pathogen genomics. COVID-19 highlighted the critical role pathogen genomics plays in responding to pandemic threats.
Transformation / Transfection: The expression vector is introduced into the host organism (bacterial, yeast, insect, algal, cell-free or mammalian cells) through transformation (for bacteria and yeast) or transfection (for mammalian cells).
We organize all of the trending information in your field so you don't have to. Join 21,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content