This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Credit: LIU Yang Researchers from the Single-Cell Center at the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences have developed a technique to sort and sequence the genome of bacteria in soil one bacterial cell at a time, while also identifying what its function is in the soil environment. […]. (..)
Credit: Jan Zrimec/Chalmers University of Technology Pathogenic bacteria in humans are developing resistance to antibiotics much faster than expected. Now, computational research at Chalmers University of Technology, Sweden, shows that one reason could be significant genetic transfer between bacteria in our ecosystems and to humans.
Credit: Vaughn Cooper PITTSBURGH, July 16, 2021 – For the first time ever, researchers from the University of Pittsburgh School of Medicine discovered that phages–tiny viruses that attack bacteria–are key to initiating rapid bacterial evolution leading to the emergence of treatment-resistant “superbugs.”
Researchers from Skoltech, Lomonosov Moscow State University, and the Kharkevich Institute for Information Transmission Problems have studied the genomes of some 200 strains of bacteria to determine which proteins in the ribosome, part of the key cell machinery, can be safely lost and why.
Modern hospitals and antibiotic treatment alone did not create all the antibiotic resistant strains of bacteria we see today. Instead, selection pressures from before widespread use of antibiotics influenced some of them to develop, new research has discovered.
Bioinformatic techniques are then used to piece together the reads into a continuous genomic sequence by aligning them to the reference human genome. At the same time as trying to understand what those regions do, researchers may also be able to measure to what degree a gene is being expressed. “If
Transformation / Transfection: The expression vector is introduced into the host organism (bacterial, yeast, insect, algal, cell-free or mammalian cells) through transformation (for bacteria and yeast) or transfection (for mammalian cells). Authors Bio Akarshika Singh is a business research analyst and competitive intelligence professional.
We organize all of the trending information in your field so you don't have to. Join 21,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content