This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
We are witnessing a revolution in healthcare, driven by advances in genetics, Omics, RNA and CRISPR gene-editing technology, to deliver precision and personalised medicine, said Kiran Mazumdar-Shaw, executive chairperson, Biocon and Biocon Biologics. Biology is opening up new frontiers in medicine.
Alnylam Pharmaceuticals announced promising results from its HELIOS-B Phase III clinical trial evaluating vutrisiran, an investigational RNA interference (RNAi) therapeutic for treating transthyretin amyloidosis with cardiomyopathy (ATTR-CM). As of March 2024, the FDA has approved six small interfering RNA (siRNA) therapies.
An area of interest has been deciphering ALS’s genetic underpinnings and delivering functional copies of dysfunctional genes to the patient. The targeted ASOs aim to downregulate the expression of gene mutations that are associated with gain-of-function toxicity that leads to motor neuron loss in some ALS cases.
This level of homogeneity within the clinical trial population may prevent the identification of variable therapy responses within population subgroups. Gene therapy, while in its infancy, could be a gamechanger for cancer treatment and certain rare diseases and advancements in gene-editing technology relies on knowledge of viral factors.
Gene therapy has shown promise in treating cancers that are particularly difficult to manage such as neuroblastoma and Wilms tumor using CAR-T cell therapy, CRISPR-Cas9 geneediting and RNA-based interventions to target genetic drivers of disease.
We organize all of the trending information in your field so you don't have to. Join 21,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content