This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
In recent webinars by Genuity Science, formerly known as WuXi NextCODE, experts from the biotech and pharma industries spoke about leveraging the power of single cell RNA sequencing platforms and solutions in conjunction with machine learning technologies such as AI in cell biology and disease research. The Power of Single Cell Technology.
RNA therapeutics are a novel class of biopharmaceuticals that harness the power of RNA molecules for the treatment and prevention of a wide range of disorders, including oncological, and genetic disorders as well as infectious diseases. Non-coding RNAs include antisense oligonucleotides (ASOs) and RNA aptamers.
The 2024 Nobel Prize in Physiology or Medicine has been awarded to American scientists Victor Ambros and Gary Ruvkun for their groundbreaking discovery of microRNA (or miRNA) and its role in post-transcriptional gene regulation. A gene contains instructions within our DNA.
These modifications regulate geneexpression without changing the sequence or structure of DNA. The CRISPR gene editing system consists of the Cas9 enzyme, which serves as molecular scissors to cleave double-stranded DNA, and a guide RNA template targeted to a specific genomic sequence, which allows for precise editing.
Mechanism of Gene Switch During the transcription process, the promoter region, which is located near the upstream end of each gene, binds to transcription factor, which is a specific type of protein. An additional level of genetic control is provided by gene switches that are located upstream of the promoter region.
These platforms — Bobcat mRNATM, controllable self-replicating RNA (c-srRNA) and ZSCAN4 delivered by an RNA virus — represent the forefront of genetic therapy, harnessing the power of mRNA to combat diseases at their genetic roots. The essence of the c-srRNA platform lies in its innovative use of temperature as a regulatory mechanism.
These modifications regulate geneexpression without altering the sequence or structure of DNA. The CRISPR gene editing system consists of the Cas9 enzyme, which serves as molecular scissors to cleave double-stranded DNA, and a guide RNA template targeted to a specific genomic sequence, which allows for precise editing.
Galidesivir is a broad-spectrum antiviral, an adenosine nucleoside analog that blocks viral RNA polymerase. STP705 is a small interfering RNA (siRNA) therapy that leverages a dual-targeted inhibitory property and polypeptide nanoparticle (PNP)-enhanced delivery to knock down both TGF-beta1 and COX-2 geneexpression.
The system induces silencing of the foreign genetic material through RNA interference that involves pairing of CRISPR RNAs (crRNAs) with trans-activating crRNA (tracrRNA) — the RNA duplex then directs the CRISPR-associated protein Cas9 to cleave target DNA. Single-Cell RNA Sequencing.
We organize all of the trending information in your field so you don't have to. Join 21,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content