This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
In the world of rare geneticdiseases, exome and genome sequencing are two powerful tools used to make a diagnosis. A recent addition to the toolkit, RNA sequencing, has been demonstrated to help researchers narrow down disease candidate variants identified first on exome and genome sequencing.
The collaboration will combine the mRNA platform of Moderna with the gene editing technologies suite, including the base editing capabilities of Life Edit for the development of curative therapies to treat challenging geneticdiseases.
Sanofi has added to its rare disease pipeline by licensing an antibody-RNA conjugate (ARC) for facioscapulohumeral muscular dystrophy (FSHD), a genetic muscle disorder, from US biotech miRecule. billion deal in 2018.
CRISPR is notable for engineering living cells, allowing scientists to edit, turn off, delete, or replace genes in a cell’s genome. This technology has powerful implications for therapeutic uses, such as replacing mutated or disease-causing genes or increasing the activity of cancer-fighting cells.
The CRISPR gene editing system consists of the Cas9 enzyme, which serves as molecular scissors to cleave double-stranded DNA, and a guide RNA template targeted to a specific genomic sequence, which allows for precise editing. Epigenetic Editing with CRISPR.
Through its Shielded Living Therapeutics platform, the company is developing functional cures for chronic diseases. The engineered cells are protected by Sigilon’s Afibromer biomaterials matrix, which shields them from immune rejection and fibrosis. Pear Therapeutics.
Related: Top 30 Pharma Companies in 2023: Statistics and Trends 1) Moderna Compound annual growth rate: 415 percent Moderna, headquartered in Massachusetts, is a prominent biotechnology company specializing in RNA therapeutics, particularly mRNA vaccines. Alpine Immune Sciences has recently announced an augmentation in its R&D investment.
That’s not the case with RNA-targeted drugs. They’re basically the same,” but each one uses a particular nucleotide to bind to specific genetic sequence. Working closely with Ionis, “We connect the need to the drug development engine. Geneticdiseases are vastly more common and more complex than we used to think.”.
The CRISPR gene editing system consists of the Cas9 enzyme, which serves as molecular scissors to cleave double-stranded DNA, and a guide RNA template targeted to a specific genomic sequence, which allows for precise editing. Epigenome Editing with CRISPR.
Galidesivir is a broad-spectrum antiviral, an adenosine nucleoside analog that blocks viral RNA polymerase. STP705 is a small interfering RNA (siRNA) therapy that leverages a dual-targeted inhibitory property and polypeptide nanoparticle (PNP)-enhanced delivery to knock down both TGF-beta1 and COX-2 gene expression.
Since then, the field of nanomedicine has steadily progressed to reach high points such as the successful use of nanotechnology to deliver messenger RNA (mRNA)-based Covid-19 vaccines. Langer’s engineering lab was instrumental in the development of these lipid nanoparticles, playing into his role in co-founding Moderna.
From leveraging artificial intelligence (AI) to streamline diagnostics and treatments to exploring the untapped potential of RNA-based therapeutics, biotechnology is shaping the future of healthcare and beyond. As of January 31, 2024, approximately 131 unique RNA-based therapies are in clinical development across various therapeutic areas.
We organize all of the trending information in your field so you don't have to. Join 21,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content