This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Moderna is aiming to build a geneediting franchise powered by some of the same technologies used in its COVID-19 vaccines. The Cambridge biotech company announced Wednesday that it will partner with Life Edit Therapeutics to develop potentially permanent treatments for rare geneticdiseases and other conditions.
Genome editing summits are generally friendly, nerdy affairs, but for a moment at a Lisbon hotel last June, the conversation at the FASEB genome engineering conference grew tense. ” It was a rare moment: Tessera had raised around $600 million and passed a $1 billion valuation, but published little in academic medical journals.
Next week, hundreds of scientists from around the world will convene in London for an international summit on genome editing. That technology, which enables scientists to easily excise, alter, or replace specific sections of DNA, was awarded the 2020 Nobel Prize for Chemistry. Continue to STAT+ to read the full story…
WINSTON-SALEM, NC – May 2, 2022 — Wake Forest Institute for Regenerative Medicine (WFIRM) scientists working on CRISPR/Cas9-mediated geneediting technology have developed a method to increase efficiency of editing while minimizing DNA deletion sizes, a key step toward developing geneediting therapies to treat geneticdiseases.
Now a common geneediting tool, the popularity of the CRISPR-Cas9 system has increased over the past decade. CRISPR is notable for engineering living cells, allowing scientists to edit, turn off, delete, or replace genes in a cell’s genome.
The CRISPR geneediting system consists of the Cas9 enzyme, which serves as molecular scissors to cleave double-stranded DNA, and a guide RNA template targeted to a specific genomic sequence, which allows for precise editing. Nearly one third of human genes lack CGIs, which would limit the use of the tool.
The CRISPR geneediting system consists of the Cas9 enzyme, which serves as molecular scissors to cleave double-stranded DNA, and a guide RNA template targeted to a specific genomic sequence, which allows for precise editing. Nearly one third of human genes lack CGIs, which would limit the use of the tool.
We organize all of the trending information in your field so you don't have to. Join 21,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content